FIND SLOPE: TABLE OF VALUES & EQUATION

A TABLE OF VALUES is a table used to record the ______ of points in a relation.

A **RELATION** is a pattern that connects two sets of data (<u>equation</u>, <u>graph or ToV</u>). (x,y)

A LINEAR RELATION is a relation that forms a line

SLOPE is the <u>rate of Change</u> of one point on a line in relation to another point.

TO FIND SLOPE USING A TOV...

We look at the unit change in one value ("x") in relation to the unit change in a second ("y") value. (as "x" increases, we can find how much "y" changes)

RATE OF CHANGE = SLOPE =
$$m = \frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Example 1: Use a table of values to determine the slope for the relation.

х	y = 3x + 1	Coordinates		
	y = 0x + 1	$\triangle X$ (x, y) $\triangle Y$		
0	y = 3 (6) + 1 = 1	(0,1)		
1	$y = 3 (1) + 1 = \bot$	(1,4)		
2	y = 3 (2) + 1 = 7	(2,7)		
3	y = 3 (3) + 1 = 10	(3, 10)		
4	y = 3 (+ 1) + 1 = 13	(4, 13)		

Example 2: Slope and the Coefficient of x

x	y = -3x + 4	Coordinates $\triangle \times (x, y) \triangle Y$		
-2	4= -3(-2)+4 = 10	(-2,10)		
-1	y= -3(-1)+4 = 7	(-1, 7) 1-3		
0	y=-3(0)+4 = 4	1 (0,4) 1-3		
1	4=-3(1)+4=1	2(1,1) 1-3		
2	y = -3(2) + 4 = -2	(2,-2)		

$$M = \frac{\Delta y}{\Delta x}$$

$$= -3$$

$$= -3$$

If the *slope* is the *same* for all coordinates then the *rate of change* is *constant* → the line is *straight*.

COMPARE

Look at the co-efficient of x and the rate of change.

What do you notice?

Example 3: Find SLOPE using the TOV below

AX	х	У	Ay	m= by
	0	0 .	1	Δ×
1	1	6		= 6
1 2	2	12) (
(.	3	18	6	26
1	4	24	6	
•	5	30	ط ا	

Example 4: Transform each equation into a y = mx + b equation. Then state the slope.

a)
$$y = \sqrt{3}x + 7$$

 $m = -3$
b) $-2x + y = 6$
 $y = \sqrt{3}x + 2$
 $y = \sqrt{3}x + 3x + 2$

ALL ABOUT SLOPE...

GIVEN:	GRAPH	TWO POINTS	TOV	EQUATION $y = mx + b$
USE:	m= rise run	m= 42-41 X2-X1	m= Δy Δx	# in front of the ox

And remember... Leave SLOPE as a fraction, and always put in lowest terms!!!